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I. Xntroduction

The mechanisms of development of severe thunderstorms are not well

understood. Rapid developments of storms and changes in atmospheric

conditions can occur over small time and space scales, greatly influencing

local weather and sometimes producing localized severe weather events.

By providing atmospheric sounding data at 3-hour intervals rather than

the usual twelve-hour intervals, the AVE experiments allow finer time

scale resolution of weather features and the possibility of more adequate

understanding and prediction of processes.

The objeetlves of this report are:

i) To present a time series of maps of atmospheric parameters

as measured for the AVE IV experiment.

2) To present a thunderstorm model which incorporates mesoscale

vortices.

3) To explain a severe weather predictive index developed by

Eagleman on the basis of a vortex model.

4) To present results of the application of this index to the

AVE IV data.

5) To compare these results with the results from applying

presently used predictive indices.

6) To suggest modifications of the predictive index.
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II. Synoptic Conditions

To determine the synoptic patterns of the thermodynamic and kinetic

variables, surface maps and 500 mb charts were drawn for each time of

the AVE IV rawinsonde flights of equivalent potential temppratu_, water

vapor mixing ratio, potential temperatureand the magnitudes of the

wind speed.

Figu: _ 1 contains the surface maps and 500 mb charts for 0000 GMT,

April 24, 1975. The surface map shows that much of the Central United

States was covered with potentially warm, moist air. Values of water

vapor mixing ratio in excess of 14 9/kg were found in much of

southeastern Texas and southern Louisiana. Mixing raties of i0 and

above were found throughout most of the Central Plains. Potential

temperatures ranged between 295°K and 310°K across most of the experiment

area. Maximum surface wind speeds were located in southern Texas

and in a band across Oklahoma, central Missouri, southern Illinois, and

Indiana, into West Virginia and Pennsylvania.

The 500 mb chart shows the maximum values of mixing ratio extending

through the eastern U.S. from Louisiana to Pennsylvania. Maximum

values of potential temperature are also in this area. Maximum wind

speeds are in West Virginia, Pennsylvania, and Ohio.

Figure 2 showsvariable fields at 600 GMT, April 24, 1975. At the

surface, large gradients of mixing ratio and equivalent potential

temperature exist over Central Texas and Oklahoma and Kansastwith values

of w varying from 4 to 16 across Texas. Potential temperatures over the

area are 5° to 10°K lower than at the previous soundinq time.

Wind speeds are also lowerrwith a local maximum at Topeka.

2
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At the upper level, the area of maximum w has moved to the east

and south. Potential temperature lines have moved southward, and the

maximum wind speeds are over the Mississippi River basin.

Figure 3 contains the surface map and 500 mb chart for 1200 GMT

April 24, 1975. The large surface gradients of w and 0e remain over

western Texas, with an intrusion of dry, potentially cool air into

northern Texas. Lines of potential temperature have moved further south

and west. At 500 mb this cooling is also present. The location of

maximum winds has changed little. The analysis of the area around

Monette, Missouri, may not be a me_sure of synoptic conditions

because the sonde was released during a rainstorm.

Figure 4 shows the atmospheric conditions at 1500 GMT April 24. At

the surface the intrusion of warm, dry air is still over northern Texas.

Lines of potential temperature have moved northward in the eastern

section of the country. Increased wind speeds are also evident. There

is no feature at the 500 mb level corresponding to the high surface

gradients of @ and w over Texas. Lines of _ have moved north in thee

East and South.

At the surface the potentially warm air has moved further into

Texas. At 1800, as shown in Figure 5, areas of high moisture have

moved slightly eastward.

At the 500 mb leve_ patterns are consistent with those of the last

flight. The area of maximum Q has moved eastward from Indiana toe

West Virginia. Figure 6 contains the surface maps and 500 mb charts for

• and w is present at2100 GMT April 24, 1975 A localized maximum of 0e

the surface at Shreveport, Louisiana. Potentially warm air continues to
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move eastward across Texas. At the 500 mb level the moisture maximum has

spread and is now centered over West Virginia and Kentucky. Figure 7

contains the surface map and 500 mb chart for 0000 GMT April 25, 1975.

The localizel maxima are no longer present in Louisiana at the surface.

At the ZOO mb level the maximum of @ has moved over Tennessee, Kentucky,e

and surrounding areas. Figure 8 shows the surface map and 500 mb chart for

600 GMT, April 25, 1975. Strong gradients of equivalent potential temperature

and mixing ratio occur in Texas at the surface. Potential temperatures

are 5° to i0° K cooler over most of the experiment area than at the previous

sounding. At the 500 mb level an area of relatively moist air is centered

just west of the Mississippi River, and potentially cooler air has moved

into the northern states. Figure 9 shows the surface map and 500 mb chart

for 1200 GMT '_ril 25, 1975. The patterns have changed little at the

surface from the previous sounding. Potentially cooler air has moved into

Texas. At the 500 mb level the area of maximum mixing ratio has moved

eastward and the high velocity winds are centered over Middlc Tennessee

and Northern Alabama.

A number of severe weather events of various types occurred during

the AVE experiment. These include _ornadoes, damaging winds, hailstorms,

flash floodings, and funnel clouds. A complete description of the severe

events is given by Turner [3976]. For the purpose of this report a

severe event is defined to be a tornado that touches down, a wind with

speeds over 50 miles per hour, or a hailstorm with stones greater than

0.5 inches in diameter. A map of the locations and types of severe events

is given in Figure i0. The reported severe hail events are shown on

the north and west edges of the severe weather region and tornado and high

winds are shown in the center, south and eastern portion.

1977014857-007



1977014857-008



t I I ' I

6

1977014857-009



I

1977014857-010



1977014857-011



1977014857-012



I0

1977014857-013



r I T I " I\' I 1 i i

I •

I

1977014857-014



"" 12

1977014857-015



' [ ' I

13

1977014857-016



, 1 I ' t' t

14

1977014857-017



15

1977014857-018



16

1977014857-019



17

1977014857-020



1 l t tI t

18

1977014857-021



I I 1 I ' I

19

1977014857-022



2O

1977014857-023



l ! i tj !

/

21

1977014857-024



, t I ' I

2Z

1977014857-025



?+

°,

., 23

1977014857-026



Z4

1977014857-027



Z5

IL

1977014857-028



! I I I _ I4 i _ I I

Z6

1977014857-029



1
• o

1977014857-030



Z8

1977014857-031



[ l I!, i

/

Z9

I

1977014857-032



3O

I

1977014857-033



31

I

1977014857-034



/ / / i
4

3_

1977014857-02



33

i,

1977014857-036



' ! ' t

34

1977014857-037



, T 1 I': I 1

35

1977014857-038



t ! ' t, I 1
i 4

,% i I

36

1977014857-039



i L 1

i

3T

1977014857-040



_8

1977014857-041



39

1977014857-042



4O

1977014857-043



1 I ' iI t <",4. t l _

, •

_. %,. _l Cx | ", k 4 I ,/ _ ro 0
\ \ ""'-""-iX \,I _(" _ '_:•,-I ID

',.I <, \l '<"" ,L _ _<.

, "- I I !t' _ _'
} )1 I. I \ o i,.+,_

' _-.i'-_ I _' 3_ ,,, o._.,_
, . , k i=. i,. i c,--"?_2---LJ _ _

' "'- -'-' ',_,7 : _="j..,= ,_' r_ _-. .-o...
I -

$I I I _

•,4-_ 0I I'- _ I__.. ---'--- --)" •l.J 1,4.I-I

' I I ..... _ _o
....... r " _" I _ III . '1" Ii _o_

.,I_._' I

I' ! I r

i I I if , .,_
I I ,,
I I I I

J ...,.#
I i li .-

;--.,___ I I .-"..... II fI

. i II I

1 . i .

tl

1977014857-044



III. The Tlmndurskorm Mode]

The airflow in a thunderstorm is important to the mechanics of

thunderstorm development. Connell (1973) has suggested that some

thunderstorms might contain a pair of contrarotating leeside vortices

based on aircraft measured winds neat cloud base. The existence of these

vortices has been substantiated by the dual-doppler radar measured winds

obtained by Kropfli and Miller as shown in Figure ii. It has been

suggested that a thunderstorm might act to block the environmental winds

in much the same way that a solid cylinder would. However, it is known

that a thunderstorm does not completely approximate a solid cylinder

but entrains some environmental air. Using the experimental results

of studies of jets in crossflows by Jordinson (1956) and by McAllister (1968),

and the dual-doppler radar measurements of Kropfli and Miller (1975), Connell

(1976) has proposed that the interaction between a thunderstorm and its

environment might be analogous to the behavior of a jet in a crossflow.

In order to produce a blocking effect in the cloud layer environmental

winds, the inflowing updraft must be opposed in direction to some of the air flow

above the cloud base. Since the thunderstorm itself usually moves, it is

the relative updraft direction that must oppose the relative environmental

winds.

Thunderstorms usually develop in environments with strong wind shear;

and, in fact, the double vortex model requires some strongly sheared

environment. As the low-level updraft enters the clouds, it encounters

upper-level winds from an opposing direction. The intrusion of the

updraft into the upper level wind will produce a blocking effect and

environmental air will flow around it with some momentum mixing which

causes the updraft to bend downwind. Flow around the updraft core will

42

1977014857-045



produce a lee-side wake where contrarotatlng vortices develop. Figure 12

is a schematic of a double vortex thunderstorm. The intensity and

vertical extent of these vortices is in part dependent upon the extent

to which the cloud layer winds oppose the updraft inflow.

A review of the literature has revealed a thunderstorm model --

developed by J. R. Eagleman (Eagleman, 1975) that is very similar to the one

just described. Eagleman had used his model to develop an index for

predicting the occurrences of tornadoes. This predictive scheme,

which will be described in the next chapter, was applied to the AVE

IV dat_ and results are given in Chapters V and VI.

43

I

1977014857-046



Y Thunderstorm

Z=6.4
I

18-

/_'_,_,,_I__ "_ Thunderstorm

k m .., ,_,_,,.._.,.._x,,%%% _ ^_. Iom/$

K"T-._-. %_%'k,,,,

X" 5.4 ___,'_/_ Echo Motion I "-_¢-_--"" '"_"_',' _,_z

0 II I _ X o ..... I_

0 6 12 o 6 Y km12 18

km

a. Horizontal flow relative to b. Vertical flow in y,z plane
moving storm at 6.4 km above at x = 5.4 km.
ground. Lengths at arrows are

proportional to relative wind speed.

r

.... - ". ,.": ===>Storm Motion

4 . ,..._.,-(__: I0 i/, km .---t . :. : : ,":\'c:'.:_: ' 5 -
I ".--'- ,' ," _ : ',_ ..... • ,';::;'1

0 6 I_ km O

C. Vertical flow in x,z plane d. Schematic representation of

at y - 11.4 as indicated in Figure flow pattern in vertical plane

lla. corresponding to Figure llc.

Figure ii. Three-dimensional velocity structure within a severe

thunderstorm measured by dual-doppler radar (from
Kropfli and Miller).
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IV. The Predictive Indices

The accurate forecasting of tornadoes is of importance to the

protection of life and property. At the present time forecasting techniques

are not accurate. Today a tornado will occur forty percent of the times

the National Severe Storms Forecasting Center issues a tornado forecast.

Furthermore, only thirty-five percent of tornadoes that do occur are

within the tornado watch area. The need for more accurate predictions

is evident.

A predictive index has been devised by J.R. Eagleman which incorporates

both atmospheric thermodynamics and environmental wind conditions hypothetically

leading to double-vortex thunderstorm formation. Darkow's Energy Index is

used as an indicator of the potential instability of the atmosphere. It

is combined with a Shear Index,which reflects the shear in the relative

winds between the surface-to- 850 mb layer and the cloud layer, to produce

an Energy Shear Index. Each of these indices will be explained in the

remainder of this chapter. The Severe Weather Threat Index (SWEAT) and

the Surface Potential Index (SPOT), which were also calculated for the

AVE IV data for comparison with the Energy Shear Index, will also be

explained in this chapter.

i) The Energy Index (EI)

The total sperific energy of a mass of air may be expressed as

E(T)= C T + gZ + Lq + v2/2, the sum of specific enthaply, potential
P

energy, latent energy, and kinetic energy, where c is the specific heat
P

of air at constant pressure, T the temperature, gZ the geopotential, L the

latent heat, q tbe specific humidity, and V the scalar velocity of the wind.

46
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Darkow (1968) points out that the kinetic energy term is usually two

orders of magnitude smaller than the other terms and may be neglected.

The _rrors in reported upper air humidity values allow

the additional approximations q = w and L = L , where w is the mixingo

ratio and L a constant latent heat of condensation. The total energy
O

or static energy _s then expressed as E(T) = C T = gZ + L Wo The total
p o

energy defined by this equation is conservative with respect to both

unsaturated and saturated adiabatic processes. Thus, the potential

convective instability of atmospheric layers is indicated by the amount

of decrease of total energy in the layers. Using the values of

-IK-I -2
Cp=l.00 Jg ,L° =2500 jg-l, and g =980 cm sec yields E(T)=

T(K) + 9.8 x lO-3Z(m) + 2.5 w(g k -i) which may be approximated as
Y

E(T) =T(°K) + 2.5 w (gkg-I) + Z(m)/lO0.

A stability index, the Energy Index, whic_ reflects the contribution

to total atmosphpric energy of both ascending potentially warm air and

descending potentially cold air _s defined as the algebraic difference

between the total energy of the air at the 500 and 850 mb levels,

expressed as E1 = E(T)500- E(T)85 O. This difference is shown schematically

in Figure 13. The 850 and 500 mb values are chosen as representative of the

low-level air and mid-tropospherlc air entering the storm as dictated

by the routine availability of data at these levels.

Quantitative values of the Energy Index had been assigned to various

degrees of thunderstorm intensity. In the range of 0.0 to -1.0,

thunderstorms are possible but will not be severe. In the range of -I.0

to -2.0, isolated severe thunderstorm activity is possible, particularly

as a continuation of severe activity moving into the regions. For

Energy Index values less than -2.0, severe thunderstorms and tornado

47
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activity are highly probable, providing an adequate triggering mechanism

to release the potential instability is present.

Shear Index

One triggering mechanism that is present in the environment of a

cloud is the vertical shear in the relative winds between the low levels

and the mid-troposphere. In this regard, Eagleman (1975) has developed

a Shear Index to reflect vertical changes in relative vector velocity.

Figure 14 shows the relationships between cloud motion, measured winds

relative to earth, and the winds measured relative to tho

moving cloud. The mean environmental wind is calculated by finding

the vector mean of the 850, 700, 500. and 300 mb reported winds. These

are interpolated so thaL the relative velocity through each 50 mb layer

can be calculated.

In order to calculate relative velocities, storm speeds and

directions must be known. For the calculation of the Shear Index,seven

storm speeds of 50, 55, 60, 65, 70, 75 and 80 percent of the mean

environment wind speed and 26 storm directions ranging from 60 degrees

to the left to 60 degrees to the right of the mean environmental wind

direction, incremented every 5% were used. This produced 182 variations

of storm movement as shown in Figure 15.

Since the model requires blocking of the inflowing low level air

in the mid-level, layers 150 mb deep are examined to see if they oppose

the relative winds of the low level.

48
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The surface-sbo mE layer is ust,d as tilt, low ]¢,vel inflow layt.r. Six

layers were chosen as the critical mid-level layers foe the u_curence of

opposing component velocities; these were the 650-500 mb, tile 400-250 mb,

the 550-400 mb, the 500-350 mb, the 450-300 mb, and the 400-250 mb layers.

The opposing components in the six mid-level layers were considered to

produce blocking if they were between 75 and 125 percent of the magnitude

of the surface-850 mb wind.

Thus the Shear Index (SI) for a trial storm and speed was defined

as the number of consecutive mid-level layers whose opposing components

were between 75 and 125 percent of the surface-850 mb wind speed. Therefore,

the Shear Index can vary from zero to six; a maximum Shear Index of 6

is shown in Figure 16. The Shear Index of a sounding was defined as the

largest SI for all 182 trials obtained for the 7 storm speeds and 26

directions. The direction of movement of an actual storm should correspond

to one of the calculated storm directions which yields the maximum SI.

The Energy Shear Index

The Shear Index measures only the atmospheric wind profile; the

proper thermodynamics must be present also for storm development.

Therefore, the Shear Index is combined with the Energy Index to produce

the Energy-Shear Index. To determine the best empirical combination of

the indices, the SI was graphed versus the _I for 59 soundings as shown

in Figure 17. Twenty-seven of these soundings were proximity soundings;

twelve were precedence soundings, and twenty were nonproximity soundings.

A proximity sounding was defined as a sounding within the warm air sector

and less than 120 miles from a confirmed tornado touchdown, and within

two hours before the tornado or no more than one-half hour after the

first report of a tornado. A nonproximity sounding is for the same

time period but located o_er two hundred miles away from a tornado

4_
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occurrence. Precedence soundings arp thoqe takPr In the warm air ahead

of the cold front but removed from it in either time or distance.

A line can be drawn that separates the proximity and precedence

sounding from the nonproximity soundings. The equation of this line is

E1 = 1/2 SI-2 or 2El -SI + 4= O. The Energy Shear Index can thus be

calculated from the equation ESI = 4-SI + 2El. If the ESI is negative

and a cold front !o nearby, tornadoes are predicted; if it is positive,

tornadoes are not indicated. For a more detailed description of the

Shear Index and the Energy-Shear Index, see Eagleman (1975).

Sweat and Spot Indices

As a basis of a comparison of the accuracy of the Energy-Shear

Index, two currently used indices, the Severe Weather Threat Index

(SWEAT) and the Surface Potential Index (SPOT) were calculated. These

indices are used in conjunction to produce short-term (three to six hour)

depictions of areas with high potential for severe storm development or

occurrence. The soft SWEAT was calculated in this study since parameters

from AFGWC Fine Mesh and Boundary Layer Models were not available.

The Sweat Index is computed u_ing the equation SWEAT = 12 t + 20 (T-49)
e

+ 2We + W500 + 125 f/2) where

t = low level dew point in "C, the level used is 850 mb
e

in the soft SWEAT and 900 meters in the BLM

computations.

T = Total totals (T=850 mb temperature plus 850

mb dew point temperature minus twice the 500 mb

temperature, all °C);for complete details on this

stability index see Miller (1972).

50
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W _ low level wind speed in knots; the level ,,spd i_ nncee

again either 850 mb or 900 meters.

W500 = 500 mb wind speed in knots.

f(_) = a step function of the veering angle W to
e W500

See Figure 18a for a plot of this function.

arab..

This term is set to zero if both We and W500 are not

equal to o:" greater than 15 knots. The term is not

computed unless the 850 mb wind direction is within the

range 130 ° to 250 ° and the 500 mb wind direction is

within the range 210 ° to 310 ° .

All negative terms are set to zero.

The SPOT index is computed from the equation SPO] = (t-60) + (td-55)

+ 100(30.00 - p) + f(v) where

t = surface temperature in °F.

td= surface dew point in °F.

P = altimeter setting in inches.

f(v)= wind speed term which is determined from the, table sho,,m

in Figure 18b.

Negative values are allowed to occur. The altimeter term is reduced by

50 percent when temperatures are less than 50°F and altimeter settings are

below 29.50 inches. Regions where high values of the index lie in close

proximity to very low values are suspect areas.
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Figure 13. Schematic total energy profile in latt, afternoon prier

to the outbreak of severe thunderstorm activity (from
Darkow, 1968).
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Rrc//__ _ 200 mb

_m

500 mb

rJ/m
I_ _ SURFACE

Figure ]4. Vectors for a tornado proximity sounding showing the

wind (R) relative to a moving thunderstorm as determined

by the movement of the storm (t), which creates a wind (r)c
opposite to the direction of movement of the storm. The

combination of (r) with the measured winds (m) relative

to a fixed point _esults in the relative winds (R) for a

moving thunderstorm (from Eagleman, 1975).
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80%_

9°L 40°L

20 °

MEAN
?_O°R

40=RC

Cloud

60 =

Figure 15. Combinatio_of storm speeds and storm directions used for

making calculations of relative winds and shear index

(from Eagleman, 1975).
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Figure ]6. Example of a shear index of six (from Eagleman. 1975).
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Figure 18a. Step function used to determine f(2) term in SWEAT

equation (from Miller and Maddox, 1975).

WIN{:) DIRECTION

LT070" LEI40 _ tE260 ° L.£360'=
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Td':6O 2
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knots and GG = q*,st speed
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Figure 18b. Table used to determine f(v) term in SPOT equation

(from Miller and Maddox, 1975).
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V. Applications of Indices to AVE IV Data

A computer program was obtained from Dr. Eagleman for computing the

Energy Index, the Shear Index, and the Energy-Sh,_:_r Index. The input

format parameters were changed to read the AVE IV data, and the section

of the program which determines the atmospheric variables at 50 mb intervals

by linear interpolation was removed since data at these intervals are

directly available from the AVE IV data. The program as received did

not execute properly on the IBM 360. For certain angles between the

assumed storm direction and the measured winds, divlsion by zero was

produced. Also the accumulation of computer-generated round-off errors

sometimes produced values of the sine or cosine of an angle whose

absolute value was greater than one. After these problems were eliminated,

a subroutine was added to calcu]ate the SWEAT and SPOT indices, and the

program was run with the AVE IV data from 29 stations at all nine times.

Figures 19 through 54 show the results of these computations. The

shaded areas on the maps of Energy Index are those areas in which EI

has a value more negative than -2 and severe thunderstorms and tornadoes

are probable. The weather types associated with other values of EI have

been explained in Chapter IV. Shaded areas on the ESI maps indicate those

regions with ESI values less than zero. Severe event locations and types

are indicated. The time of the sounding was between two hours before

and one hour after any severe events marked at a sounding time.

Tile follow_ng con_L,nts summarize the tests using AVE IV data:

5_

J
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A summary of the number of occurrences of each type of severe weather

is given in Table i, along with the number that was correctly

predicted by each index. The sweat and spot index predictions are not

included because it was felt that the criteria for both are not

sufficiently definitive to permit an objective prediction. As we gain

experience with their use we will better trust our subjective use of

these indices and may Jse them for comparison.
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Table 1

Events Reported Events Correctly Predicted bX

Type Number EI ESI

Hail 4 4 4

Tornadoes 9 4 6

Wind 5 4 3

TOTAL 18 12 13
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Vl. Summary of Results !

J

A graph of the El's computed in th_s study versus the

Sl's is shown in Figure 55. While nine of the twelve _ •

Jproximity soundings and all but one of the precedence soundings fall below
!

the line E1 =0.5 SI-2, this line does not uniquely separate these _

Jsoundings from the nonproximity soundings as it did for the soundings "_"
t

studied by Eagleman. (See Figure 17, Chapter IV, for comparison,) A linear

relation between an ESI and Sl and E1 is not clearly indicated.

However, the tests of the ESI computed on thi_ basis do show that the
J

ESl so computed does improve the forecast of severe wind events due to

thunderstorms (such as tornado and linear winds). It is slightly better
!

? than just the energy index which has no windshear component. It also
l

is better than the SWEAT which does include an average wind shearrelated factor.

The results with the small sample from AVE IV are not as striking as
I

those shown by Eagleman. (See Chapter IV Reference, Eagleman, et al. 1975.)

• "I VII. Conclusions and Recommendations

The incorporation of vertical shear of horizontal environmental wind

(i) in smaller layers (~200 mb thick) and (2) in a manner consistent with

a double vortex model of a thunderstorm does produce slightly improved

. prediction of/or positive correlaticn with severity of thunderstorm winds

and velocity of thunderstorm motion. It is still true that many

" thunderstorm severe events and velocities of movement are not predicted

by this or any current method and the false alarm rate is high.

The method of Eagleman requires making a large number of guesses

of the direction and magnitude of the motion of the predicted storm.

Further, it does not prevent prediction of several directions of motion
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at the same time. Finally, the choices of positions of significance

for vortices and the thickness of layers for computing wind shear are

neither as refined nor as physically based as now seems desirable.

It is recommended that steps be taken to improve physical insight

into the mechanisms set into operation by the interaction between the

thunderstorm and the sheared environment. However, even without the

detailed dnderstanding of these processes it is possible to test an

improved Shear Index. Several suggestions follow:

(i) Use thinner layers of atmosphere for computing shears.

(2) Reduce the amount of guessing of storm vector velocity which

is required in the present method•

(3) Improve the form of the energy shear index relation.

(4) Eliminate cloud zones of probable irrelevance from the shear

index calculation scheme.

(5) Utilize more field experiment data both for developing better

correlations among prediction parameters and for testing the

predictive schemes.
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I
Appendix A

i. A printout of the computer printout is attached as exhibit A-I.

2. Program Checkout.

To insure that the Energy-Shear program was making the desired

calculations for the shear index correctly, the program was run with

the data from Charleston, South Carolina, at 2100 GMT on April 24, 1975.

An assumed storm speed and direction of 50% of the cloud layer average

windspeed and i0 degrees to the left of the average wind were chosen

for a test calculation. These parameters gave a computed storm velocity

-i
of 5.45 meters sac from 274.63 degrees. The shear index was 5 with

-i
surface to 850 mb average winds of 8.10 meter sac from 179.97 degrees

-i
and a 550 to 300 mb average wind of 9.92 meters sac from 315.47

degrees.

Instead of following the computer program step by step, vectors

were used to calculate the relative mean wind velocities for each 150 mb

layers and the component of these velocities opposed to the surface-850 mb

mean velocity.

The components of the cloud layer average wind were calculated by

finding the average of the u and v wind components at the 850,700, 500,

and 300 mb levels as given in Fucik and Turner (1975). The average winds

for each 150 mb layer were also found using the published u and v values.

Table i gives the components of the mean wind and the average wind

through each layer, and the 550-300 mb average wind.
i

-- -2 -2 _
The mean cloud layer wind was calculated from Ycl= (Ucl + Vcl) and

Vcl )
the direction from 0 = Arctan (_--_i"" This yielded Vcl = 10.8783 and

0 = -14.643. It must be remembered that this O is the angle in
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!

the usual mathematical coordinate system and must be converted to the

• meteorological system.

Remembering that the assumed storm speed and direction correspond

to 50% of the cloud layer average speed and move I0 degrees to the

left, the assumed storm moves at 5.44 meters sec from 274.64 degrees.

This velocity was also resolved into u and v components to facilitate

calculation of the relative mean wind in each layer. Relative velocities

were calculated using the equatlonVL-V S = VR. The components of the

, relative wind are given by Table 2.

{

The component of the relative wind in the upper layers which directly

opposed the surface-850 mb relative wlnd was then found by

Vu _VB

Vu_B ffi VB . Thls component is also given in Table 2.

The magnitude and dlrectlon of the surface to 850 mb layer relative

mean wlnd were calculated from the components by the method described

earlier for the cloud layer average wind. The resultant relatlve wind

-1
was 8.1050 meter sec from 182.04 degrees.

Since the model assumes that the component of the relative mean wind

velocity of an upper layer that dlrectly opposes the surface-850 mb

relative wind must be between 75 and 125% of the magnitude of that wind

in order to produce blocking, the value of Vu. B should be between

• 6.075 and 10.125 if the layer is to have a blocking effect. From Table 2

five consecutive layers have values of Vu_ B within this range; therefore

the shear index is 5. Table 3 gives a summary of the values computed from

the IBM 360 and those calculated using vectors and the HP-65 calculator.

Discrepancies between these values are probably due to sounding differences

in the two machines and are well within the accuracieg of the data.
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Exhibit A-I. The Computer Program

....... -..... * ......
o

.... $J_e - + TI_[e4*PAG(S.99 .........

........ C T_I_-J=R_R&_ CALCULATES T._ ENE4GY-_AR- |NOEX FqO_ qAW|NSU_DE--DATA ................... _"
C
C

1 D1v[_SlO_ _T["#(3)oDATEISI* _RESS_3)*G_T(3)eT£_i3Je_T(2itA$IkZ)

5 DI_'E'+SION ISAvE(6I
-. 6 I_T[G[_ HD_R ....

C
7 DATA A6EFT/&H_E_TI

...... | . . DaTA RIG_T/kHR_HT/ ............................

9 CO_O_ TE"=, DT[_, _2, _S, _U_, '_DAY, PRESS, G=nT

C RE_D I_ A DATA SET
C

.... 11 .. XO0 READ (S*_X02) |STA, DATE ..............................................
|2 |_ _:STA *EG* 999991STO_

14 D_ 10% LOP1* _.T
_5 =£AD 15,1|061 w_ (_OPl), _SILOP|I

--- 16.-- ;0% CO_TINJ[ .................................................... -- -- --
IT READ :_*11_10_TI2), PqEs6 (21, T[_P 121, DTE'_P12), wDIO )* _S1

1_ D: 110 _0_2, 9,2; ..................................

_0 110 ¢OqT|NUF
_. .|_ - . READ (_,|l:k| GD_TI3), PRE6& |_)t _[_ 1)1, OT[Mmi_), WDIZ_|,+WS( ......................................

I Z21
_ D3 115 kC_S* 23*kl

_-. 23 REA_ 15,11361 _ tLOml|, dJ|k_S| .......................................

_S %107 _O_vAT t|S*2PXoSA4I

2 7 1106 F_AT (?_XoF6.1or_,I)
C |e _ITA IS _|SS|_* _qINY w_SSAGE

_8 |_ | _=MT(_) ,r_o 99,9 ,_q, G_Ti)! .E_, 99091 GO TO _99 --"
_9 |e | TirOl2) *[3. 99.9 ,01, T[_Og3! *E_, 99,9) G_ TO _99

.... )0 - |_ 10t[_D|?| *E_* 99,9,0_*_t_:|$! *E_* _9,_9 G_ TO 2_9
¢

el .¢llfltiiliillegiiofitti)tlii.lt it b_&letolo_ll_lll lilotilllii_,t_lt_lii_
C

-. C |4_CU_A1[ l_E (N[_GY _DE& ......

¢ )
$1 DO 2*0 t=_*_

_ i[vPa . T:_';J ill .273.16 i

$S [X_ • 1170_6938_2 lir[aulolll*lbiiltil_'Vkolt,lkl
36 _0 T_ 733 a
$? !1_ (11 * iiloiqil%ltiTfv,i&oF?le|61l,tYEil'Aoi,661
SI llO F • 6ol_llll?,7il_li*_lll

1o _"lXll • 16?I**EI/I:'iI[SSiII-EI f*

r
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,E4........+I 1........ 1 1 t t ......t

P

_1 it|J! • t2AelT[_PR +2.SeAV|XqA*GPNT(|)/100e!

k3 El= ET(2I-ET(I)
kk- Gh TO 3GO ............
k5 299 w_iT[ (6*_0121 _ATE* |STA
k6 1017 FORMAT {42HTNE ENERGY |_OEX CAN.T SE CAbCULATE_ FOR ,SA4,1X,|S! *__

..... 61 .... GO TO 230 ...........................

_oe_eleeeeloeoolQeet_oel_leeeQlt_oile*et_ooeelolttolletoeoltellllilleel
........ _ . . ° .......

C CALCULATE THE _[A_ O|hO VE_C|TY OF TME CLOUD LAYEq
C

_8 300 _|TE ¢6t1122) DATE, |STA .........
k9 1122 FO_ATIIH1,///olTXoSA4,1XoIS.kOX,IB_SHEAR I_DEx V| _0a*/I)
SO |Clm 0

-_ - _1 -- I_OUR - 0 ......................................................

52 DO _0_ I=1,20 .

54-- IF (l .NE, 11 1W'2*I'2 .........................
: 5S IF (WS(I_IoNE* 99o91 GO TO 304

_6 5¢1" ICI*I

S_ G_ TO 304
_9 30? IrOU_ • X_OU_l
60- $q4 CO_T|_u[ ..............................................................

6_ xwIND *G*

6_ DO _12 J*l*20
65 J_oJ
&6 - IF |JoNr* |l J_s2eJ-2 ...........................................
_7 XF |kS(J") iE_o 9_og) GO 10 _1_

-- 6q-- GO TO 11_ ........................................................

Tl XWl_ • Xk|ND * *$LJ_)ICOSIqA_ISI
--.. ?_.+. Y*IN_ • Y_|_: + .SlJMIIS;3IRAOlil ...............................

+_ +12 CONtI_UF
?i $2: AVX# = X_|_Ollko-F_O_Tl|FOq,lq))
?_ AVYW • Y. IN_/Ike-F_OAT||FOURII .......................................
76 TU_S. SOqTlAVX_e*_ *AVY_O2|
71 DO • AVVWlAVRW
Ti T_wO x AT&_|DDIeST._96 ...................................
?_ |FIAVXw,GE,O,) GO TO 3_0
_5 T_D • T_D *IE0*

..... Jb--+ _qO IF LTvWD ,LT, 3e) T_WO * Tv_O*_bO* . . " .....
q? 1_ t T_*D *3T* 360.1TWW2 • TW_-)60,

t4 |SAVElY) s| ......
+$ ++q CONTINUE

n? O: 6qq Ill* I,l

, *e D_ _gq _ * lt]l*t
C
CIl**litileitiliiilllilttiiti_litltlltt_illiiiltiel_lill_lli_llllllii*

c
C CALCulATE R[LAT|v[ _IN_ VELOCITIES _ISFD UN bEV|AT|)NS
C O_ ST_R_: OINECTI_S _'_C_ TM( _EAq *I_D V_OCITY

• ¢

pA,+,uIS

e
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i ........... - .......... Ii

I" eO t.U_oR= 50*L-I

91 IDEVIT • (-1 o

9? $S • Tv_S eFLOATISOeL*IIII00e
T_ 91 .... I+ ll|l*[O*Z) DIR* RIGMT ............................

99 IF llllot_o E! _IR= ALEFT o e_,
• 9S l_ [ DIR*_g. ALrFT! ;OEvITe IDEVIT*f

-- - 9& --- i; IlZI,[Q,i) _ TO 401 ........................................
9? SOB T_+_ *FLCATI_i-I* •

[ 9B GO T0 402 .t
! 09 - k01 $0e T_WOeW_OATIKiekl ................... i ............................. I

100 i+? DO k)0 LL*I,2C +101 LL_ • kk
! --. 102-- I; ILL*4EeliLk_=SeLL-Z ...............................................

103 GAvvi iSD-wDILL_) +104 RA3GAa GA_VA/STeE96

---- lOS . R_S(LL u) • SOgTIWSILL_tee?*SSeeS"2*0edSILLvIeSSeCsSIqASGAt; ......................... _ |

106 SI%SS • (SblSI%ItADGAIIIR_S¢_LII e

!109 IF ISINSS,LTeO*OI hSl_ll ....................

109 II IAmtISI%_SI*GE, *9999998 el_D, ABSIS|_SSI*_P*_.O$:¢il S;_$SiI.O e

113 IF iSI_SS._T.;.I 30 T_ 122k .........
.... Ill .... It I_Sim ,(O,i .A_D, IINSS ,FO, I.Ol SIllS • -IT0 ...... ;

I12 IF IIZ,_oA_SISi_SSI*'2,i *GT. O*Oi GO TO 40S • i

11_ C_SSS./.O - " - ..............

11_ O0 tO +I_ +
: t16 40+ C3S$_ IS_T|I*O" a_SISl_S$iee_,2)

i 1_7 _$32 FORMAT tk|ke2E14.6) ......................................................

i 11_ k1: 'F 1C_$$S oLE* .0=:_0Z) O0 TO k1$
11_ T_SS. SI_SS/COSSS
I_0 _[TA • ATA_ITA_SSieS?._9_ ....
_;1 _? T2 42: *
ill il_ mqlT[ 16i_$¢2l III*Ii_*LL_*SI_SSiCCSSS

-- Ill-- IF Ill,IS - O,_l +iltilliill ....................................................
l;i +1+ B£TA • _?0. +
liS O0 TO *TO

• 1_6 _17 BETA • 90, -- -" +"
lit il0 IWDILLMi ,..D ILim|-IETA
III IF it_DILL+IikT*Oii RM:ILLi) I liDikk_l*)60*

.. 119 .... II IRkDI_LMi,GT,IIO*I IIDILLil* R+DILLII*IIO* ...........................
ilo il_ CO_il_Ut
151 IDI •

_. 1$1 DO +4_ +. l,S

115 IC! • l_I*l °
Ill ii_ COaTi,U[
111 XS_* • O, ""
1$9 vSU_ * O*

lkl ilV, ll
lll III ll,'i[,ll ili_ fill-1
lil If I +SIil_l,fl* ¢0,91 +O TO ilO
IiS ql*_ • q,_111+1#S1,196 *
11t IS.Iv, xSJv*ix%lll_l*COS it'4.1DI
liT vl_v • vl_*v*%*Slil_lelilllliOl

c

104

1977014857-107



0

°_ Ceoe_ee6006eoooeooee_o_eeoeoeoeoeteeoo999uoeo99ooooololootoBeteolellQJ_ i
C

C CALCULATE uAYER AVf_&GE$

169 AVX$_ • XSuulFLOATIN_) _.

-.-191 A¥_S • $_RT! AVR_eeZ*AVYSU_ooZt ....................................
IS2 O • AVYSUVlAVXS_ ¥ +
153 *v_,3 • _TA'.(O_,57,_6 j-

iS? |K |&V_*_ oGTe )hOe) AV_dO • AVR_De}bOIO" " ......... +

1_ |_ ( C; _,Ot, 36_o) C_D • C_D'360*
160 DO 570 _ 16_M*? ..............................................

16_ Xq_ _O,
lJ_ VN_ • Oe ...... --

165 _ks_ I
-166 .... DO $7_ _m <K|o<_e2 ..................................................

167 l _ (_S(_KLIoF_og_og) 30 TO _10 (

+ 160 Rqq_D m_X_l(_l/_?,2O6 . I_ :

110 vq* • v+, *_+SI_)oSI%IMR_+D) q,
I?I GO tO _20 ?
17_ SIO reds _J*l ....................................... I
|73 _+0 CO_tl_u[ + i

|?S AlVa; • X+i*II4,o;;CAIIt(JII

117 Aa_qn5 • SOq_(AAV_*ooIe YAV_Oe_!
--ITI E8 YAVN_IXAV_d -- .....

l?e X&Vq*g • ATI_IEIeSToIgt
IIO |e I XAVe_,_,O,I O0 TO SJO

111 S_O |ff IAAV;;m:eLtoO*| X&+i*: • X&V_iD*_60,
1_} Xr ( I&V_d_o_e )601| X&V_aO • AiVq4_'_)JOo
Ilk .... CD[01 • l¢IOl_lVeW_) .....................
I1+ lr IC_[Ol,++,+O,l GO tO 560
116 C_[C? • CO[_l * 90*
|P? I; ICO[07,_to_,! GO TO S60

"'-I"q)_ - "" _0 _0 _?0

1_ GO ?0 _0
)q) 5_0 XlVq.O • _avR_O * )tOe -"
I_* C0[31 • x*v_wO-C.D

Ilk I _ lCnfOl,_o o%1 GO TO S_O
11+ C+O • C_ *_hO,

_flO l_ ICn_Ol ,_T, 13*! GO ?0 $43 )
_31 CWS I_)o --le
ZOJ I?O C_tl_[

++

++J.NALP,L('_ IS
,_" POOR 0" LL!+,+'[

• ,

lr++
l
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j
/P

"" 20S JJJJs0
_=6 _0 _ JJJe2Ot3Ot2
207 IF (WSIJJJ) oil* 99.9) GD T0 S?S c

209 Xv|D a Xw|O *R#$(JJJIB¢OS (_qRs_)
m

-- -Zl; -- GO TO S_O ................
ZI? S?S jjjjejjjj.|

.... _|k+-, If |JJJJ,£O, 6J _ TO 590 ........................................................... "'
ZlS XAVV|_ • Xv]2/¢bo.FLOATIjjjj) I
_6 YAVV|_ • _v_=/(6e-FL:AT|JJJJ)| •
2_? ;V_D= • s_qT(x_V4;D e*2_ YAVq|Oeo2| ......
21* G • YAV_|_/KAV'*|0
2|Q AVVD|R • J_A_¢:_eS?*2?6 o

_21 AV_gl_ • AV_*O]R e180,
22E _n_ |_ ( AV_D|Q *k?*0,) &VVgl_ • AV_O|R *360e e
2_3 _F ( AV_D|_ e_* 360o1AV_D|R • AV_|_-)6O,
E_* C3 _C _OO

-- 226 &VUD|q • "|* .........................

_e_Boeeoeg_e_e46t_e_oeleooe_eoee_l_oooeeoleeeoD_oeeol_o_oeeeeeeeleff_ee •

C CALCulAtE S_[_q |_E_

E2S D_ _11 _JK • 16_20,2

! _ ]F ((*S{_Jq) *LT, 0*) GO TO 611 e

i ?_! .'r :=:V_ , ,:T :,1 3_ :0 6:3
; _ il; CU_T]_UE e

?)* |_ iCeS II_J) ,GT, 0,) GO-TO iJO "

;36 GO TO 670 ...........
25? 620 _- l_J
2)e F • _, *
_lt IICESC • 0 .........................

66_ JJ<e _e)]*] _"..
Zk| |_ ¢:kJ IJJ_| *_YeOe) GO TO t_
2_ :]IF • CASLJJ_I eAVR_$
2_3 _C7 • +Z_oaVlL$

t _4k |_ IA_SlO|Prle_(, A_| GU TO 6)S
+ _6 _0 TO 665
i ?_1 $I L |_ ¢ F *tQ* 0*! _ _O 6*_
i Z4O :C;SC • lC_5_ *1

_4e 30 TO 6SO
• t _SO i4_ |CZ_C *|

: ?_; • . ],

_$4 k_ CO_tlNU[

_SS |_ l IxCT_C ,_Y, l_gS_4) _,_9S_ • txCilC

I_e G_ TO _ee

i too
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260 6*0 iZ[_O • A
; _61 v_ , |S,VFIIXC25_)

P++ vSS_§ ,l_C2+CevV! • |_+P,+_

_++ _Fv++, II,C2_C,vm! * D|m o t
26S Sq'.52_ ¢lxC2_Ct u_l • AVHWS
241_ +-. SR_D2S I|xC2SCev_I • &VRdD .................
Z67 SSZ_IXXC_¢o _v) • SS * _

+ 16+ $22S IleC;gCtwe! *SO
-- 161 ..... Olmvl+ (IxC?+¢0+m) • IV_D|_ ..................................... + "

+7_ S+=_|DIIXC25C*< '°) • AV_S+D +
2T1 XSAVEI|XC2SCI * |SAV[I|AC2SC) +1
272 G_ TO 699
Z71 69_ |ZERO *0

_?_ lS_v[_ * IOfvlT ..........
+ _?6 SAv_Dv * _zq
| +TT S&V[+S • Avq+s270 SIv[_D * AV_dD

_?= SAVES *$S
_0 SAV_* SD

-211 SAVE","D• _VVDIq ......... -.......

_R$ 699 C_T|hu[

C
.- + ¢ CALCULA?[ EqE_Gv-SmlAq I%D|A ...................

C
I++ [S| • +* -+L+I? I|_smq) * 2* eel
295 Z+ l|ZE_Oe[+*_l GO tO 910 .......
206 _+ *_ ! -1.* ,

2RR __ _ uwo ISlv[ lll-I .................................................
C

_ . +

¢
Ill ++Itr 16,Z_ZO! l

+-- II0 - 11t0 UO_mlt II_o}+.,6+mtmE 'O_O_l_O STO&USPE(OI lm_ O|mtCVlOqS GAVE A

lq:, ;_Ol?[16*;ZLZl
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0

Layer Average u Average v

Cloud layer 10.525 -2.75

Surface-850mb 5.42 7.66

650-500 mb 12.975 -6.275

600-450 mb 12.275 -6.7

550-400mb 12.425 -7.65

500-350 mb 12.0 -8.45

450-300mb 12.075 -8.125

400-250 mb 13.3 -7.9

550-300mb 12.3667 -7.5

TABLE 2

Components of Stormspeed u - 5.4322 v - 0.4399

Relative Relative
Layer

average u average v Vu-L

Surface-850 mb .2878 8.0999

650-500mb 7.5428 -5.8351 5.4323

600-450mb 6.8428 -6.2601 6.5371

" 550-400mb 6.9928 -7.2101 6.9923

500-350mb 6.5678 -8.0101 6.1551

450-300mb 6.6428 -7.6851 6.6428

400-250 mb 7.8678 -7.4601 7.8678

550-300 mb 6.93448 -7.0601
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Table 3

Variable Computer value Calculated value

Storm speed 5.45 5.44

Storm direction 274.63 274.64

SURF-850 AV.REL. SPEED 8.10 8.105

SURF-850 AV.REL. DIR. 179.97 182.03

550-300 AV. REL. SPEED 9.92 9.90 i

550-300 AV. REL. DIR. 315.47 315.51

Shear Index 5 5

i
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